<u>UNIT – I</u> <u>RELATIONS & FUNCTIONS</u>

Multiple Choice Questions(1 Mark)

1	Relation $R = \{(x, y) : x \le y, x, y \in \mathbb{Z}\}$ is	
	(a)Reflexive and Symmetric relation	(b)Reflexive and Transitive relation
	(c)Symmetric and Transitive relation	(d)Equivalence relation
2	Which of the following relations defined on set $A =$	$\{1, 2, 3\}$ is reflexive but neither symmetric nor
	transitive :	(,,,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$(a)R = \{(1,1), (2,2), (3,3)\}$	$(b)R = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}$
	(c) $R = \{(1, 2), (1, 3), (2, 3), (3, 1), (2, 1)\}$	(d) $R = \{(1, 2), (2, 3), (1, 3), (2, 1)\}$
3	Function defined by $f: R \rightarrow R$ $f(x) = x^3$ is	
-	(a)only one-one	(b)only onto
	(c)one-one and onto	(d)neither one-one nor onto
4	Function defined by $f : \mathbb{R} \to \mathbb{R}$ $f(x) = x^2$ is:	
•	(a)only one-one	(b)only onto
	(c)one-one and onto	(d)neither one-one nor onto
5	Relation $R = \{(r, r), (v, v), (r, v), (v, r)\}$ defined	on the set $A = \{r, v\}$ is :
5	(a)Only Reflexive relation	(b)Only Symmetric relation
	(a)Only Transitive relation	(d)Equivalance relation
		(d)Equivalence relation
6	Relation $R = \{(x, y) : x < y, x, y \in \mathbb{Z}\}$ is	
	(a)Only Reflexive relation	(b)Only Symmetric relation
	(c)Only Transitive relation	(d)Equivalence relation
7	Relation $R = \{(x, y) : x < y^2 \text{ where } x, y \in \mathbb{R} \}$	} is
	(a)Reflexive but not symmetric	(b)Symmetric and transitive but not Reflexive
	(c)Reflexive and Symmetric	(d)Neither reflexive nor symmetric nor transitive
8	If $A = \{1, 4, 9, 16, 25, \dots \}$ then function define	d by $f: \mathbb{Z} \to A$, $f(x) = x^2$ is
	(a)only one-one	(b)only onto
	(c)function is not defined	(d)neither one-one nor onto
9	If $A = \{0, 1, 4, 9, 16, 25, \dots \}$ then function defined	ned by $f: \mathbb{N} \to A$, $f(x) = x^2$ is
	(a)one-one but not onto	(b)onto but not one-one
	(c)one-one and onto	(d)neither one-one nor onto
10	Function $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \frac{3-7x}{3}$ is:	
	$\frac{1}{2}$	41 · · · · ·
	(a)one-one but not onto	(b)onto but not one-one
	(c)one-one and onto	(d)neither one-one nor onto
11	If $A = \{0, 1, 4, 9, 16, 25, \dots \}$ then function defined	ned by $f:\mathbb{Z} o A$, $f(x) = x^2$ is
	(a)one-one but not onto	(b)onto but not one-one
	(c)one-one and onto	(d)neither one-one nor onto
12	If $A = \{1, 4, 9, 16, 25, \dots \}$ then function define	d by $f:\mathbb{N} o A$, $f(x)=x^2$ is
	(a)only one-one	(b)only onto
	(c)one-one and onto	(d)neither one-one nor onto
13	Function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x}$ is:	
	(a)one-one but not onto	(b)onto but not one-one
	(c)function is not defined	(d)neither one-one nor onto
14	Relation $B = \{(r, v) : r < v^3 \text{ where } r, v \in \mathbb{R}\}$	lis
	(a) Reflexive but not symmetric	(b)Symmetric and transitive but not Beflevive
	(c)Poflevive and Symmetric	(d)Noither reflexive per summetric per transitive
1 -	$\mathbf{F}_{\text{unstanded}} = \mathbf{F}_{\text{unstanded}} $	whether renexive nor symmetric nor transitive
TO	Function defined by $f \cdot \mathbb{Z} \to WV$, $f(x) = x^{-1}$ is	(h)anta hut nat ana ana
	(a)one-one but not onto	(d)noither one one nor arts
	(cjone-one and onto	lameither one-one hor onto

Fill in the blanks(1 Mark)

4 Marks Questions

- 1. Prove that the following relations defined on the set of integers ${\ensuremath{\mathbb Z}}$:
 - (i) R = {(x, y) : x y is an integer }
 (ii) R = {(x, y) : 2x 2y is an integer }
 (iii) R = {(x, y) : x y is divisible by 4 }
 (iv) R = {(x, y) : x y is divisible by 3 }
 (v) R = {(x, y) : |x y| is divisible by 5 }
 (vi) R = {(x, y) : |x y| is divisible by 6 }

are (a)reflexive (b)symmetric (c)transitive

2. For the following functions $f : R \rightarrow R$:

(i)
$$f(x) = \frac{3x+5}{2}$$

(ii) $f(x) = \frac{2x-7}{4}$
(iii) $f(x) = \frac{3-2x}{4}$
(iv) $f(x) = \frac{4-3x}{5}$
(v) $f(x) = \frac{6-5x}{5}$

(v)
$$f(x) = \frac{7}{5x+7}$$

(vi) $f(x) = \frac{5x+7}{6}$

show that these functions are one-one and onto.

<u>UNIT – I</u> <u>Inverse Trigonometric Functions</u> <u>Multiple Choice Questions(1 Marks Questions)</u>

1	$\cos^{-1}\left(\cos\frac{2\pi}{3}\right)$ is equal to	D :		
	(a) $\frac{\pi}{5}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$
2	$\sin^{-1}\left(\frac{1}{2}\right)$ is equal to :			
	(a)0	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$
3	$\cos^{-1}(0)$ is equal to :			
	(a)0	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$
4	$ an^{-1}(1)$ is equal to :			
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$
5	If $y = \sin^{-1}(x)$ then x is	elongs to the interval:		
	(a) $(0,\pi)$	(b)(-1,1)	(c) [-1,1]	(d) $[0,\pi]$
6	$\sin^{-1}\left(\sin\frac{\pi}{3}\right)$ is equal to	:		
	(a) $\frac{\pi}{5}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$
7	If $\cos^{-1} x = y$ then x below	ongs to		
	(a)(0,1)	(b)(-1,1)	(c)[-1, 1]	(d)[0, 1]
8	Principal value of $\cos^{-1}(1)$	L) is $(h)^{\pi}$	$(a)^{\pi}$	$(a)^{\pi}$
	(a)U	(d) <u>-</u>	$(c)_{\overline{3}}$	(a) _ 6
9	Range of function sec ⁻¹	is :	$(\pi \pi)$	
	(a) $[0, \pi] - \{\frac{\pi}{2}\}$	(b)(0, π)	$(c)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)-\{0\}$	(d)[0, π]
10	Domain of function cose	c^{-1} is:		
	(a)[-1,1]	(b)K – (–1,1)	(C) ℝ	(a)(-1,1)
11	Domain of the function ta	an^{-1} is :		
	$(a)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(b) $\mathbb{R}-(-1,1)$	(c) ℝ	(d)(-1, 1)
12	If $\tan^{-1} x = y$, then y be	elongs to the interval :		
	$(a)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(b) $\mathbb{R}-(-1,1)$	(c) ℝ	(d)(-1,1)

4 Marks Questions

1. Find the values of :

(i)
$$7\cos^{-1}\left(\frac{1}{2}\right) + 12\tan^{-1}(1) - 4\sin^{-1}(-1)$$

(ii) $5\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) - 3\tan^{-1}(\sqrt{3}) + 7\sin^{-1}\left(\frac{1}{2}\right)$
(iii) $5\cos^{-1}\left(-\frac{1}{2}\right) + 8\tan^{-1}(1) - 3\sin^{-1}\left(-\frac{1}{2}\right)$
(iv) $2\csc^{-1}(-1) - 5\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) + \sin^{-1}\left(-\frac{1}{2}\right) - 4\cot^{-1}(\sqrt{3})$
(v) $3\csc^{-1}(1) + \sec^{-1}(2) - 5\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + 7\cot^{-1}\left(\frac{1}{\sqrt{3}}\right)$

<u>UNIT – II</u> <u>MATRICES & DETERMINANTS</u> <u>Multiple Choice Questions(1 Mark)</u>

1	If order of matrix A is 2	$\times3$ and order of matrix I	$3 \hspace{0.1in}$ is $\hspace{0.1in} 3 imes 5 \hspace{0.1in}$ then order of mat	rix $B'A'$ is :
	(a) $5 imes 2$	(b) $2 imes 5$	(c) $5 imes 3$	(d) $3 imes 2$
2	If $\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 8 & 4 \end{vmatrix}$ the	en value of <i>x</i> is :		
	(a)3	(b)2	(c)4	(d)8
3	$\operatorname{If} \begin{bmatrix} 2x + y & 0 \\ 5 & x \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 5 & 3 \end{bmatrix}$, then y is equal to:-		
	(a)1	(b)3	(c)2	d)-1
4	If A + B = C where B and (a) 5×5	C are matrices of order 5× (b) 5×3	5 then order of A is :- (c) 3×5	d) 3×3
5	If A B = C where B and C (a) 5×5	are matrices of order 2×5 (b) 5×2	and 5×5 respectively then or (c) 2×5	der of A is : d) 2×2
6	If order of matrix <i>A</i> is 2	imes 3 and order of matrix I	3~ is $~3 imes 5~$ then order of mat	rix AB is:
	(a) $5 imes 2$	(b) $2 imes 5$	(c) 5×3	(d) $3 imes 2$
7	If A is a square matrix of	f order 3×3 and $ A = 7$	then determinant of the mat	rix 2A is
	(a)14	(b)28	(c)42	(d)56
8	If A is a square matrix of	order $4 imes 4$ and $ A = 3$ t	hen <i>Adj</i> . (<i>A</i>) is	
	(a)27	(b)81	(c)9	(d)3
9	If $A = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$ then $ A $	is		
	(a)—9	(b)9	(c)1	(d)-1
10	If A is a matrix of order of	of 3×3 and $ A = 3$ then	Adj(A) is	
	(a)81	(b)9	(c)27	(d)3

Fill-ups(1 Mark)

1) If
$$A = [a_{ij}]_{2 \times 3}$$
 such that $a_{ij} = i + j$ then $a_{11} =$ ______

2) If
$$|A| = 5$$
 where A is a matrix of order 3×3 then $|adj.(A)| =$ _____

3) If matrix
$$A = \begin{bmatrix} 2 & 3 \ 1 & 5 \end{bmatrix}$$
 then $|A| =$ _____

4) If order of matrix A is 3×4 then order of A' =_____

- 5) If for a matrix , A' = A holds then A is _____ matrix.
- 6) If for a matrix , A' = -A holds then A is _____ matrix.
- 7) If for any two matrices A and B, AB = BA = I then these matrices are ______ of each other.

8) _____ matrix is symmetric as well as skew-symmetric.

- 9) If order of matrix A is 3×4 and order of matrix B is 4×7 then order of AB is _____.
- **10)** If order of matrix *A* is 4 × 5 then number of elements in *A* are ______

2 Marks Questions

1. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, then verify $A^2 - 7A - 2I = 0$.
2. If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ show that $A^2 - 5A - 14I = 0$.
3. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ and $f(x) = x^2 - 4x + 1$ then find $f(A)$.
4. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 7 \end{bmatrix}$ and $f(x) = x^2 - 2x - 3$ then find $f(A)$.
5. If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $A^2 - 8A = kI$ then find k .
6. If $A = \begin{bmatrix} 0 & 3 \\ -7 & 5 \end{bmatrix}$ then find k so that $kA^2 = 5A - 21I$.
7. If $X = \begin{bmatrix} 3 & 4 \\ 2 & -1 \end{bmatrix}$ and $2X - Y = \begin{bmatrix} 5 & 10 \\ 3 & -5 \end{bmatrix}$ then find the matrix Y .
8. If $X - 2Y = \begin{bmatrix} 5 & 1 \\ 2 & 0 \end{bmatrix}$ and $2X - Y = \begin{bmatrix} 4 & 9 \\ 1 & -3 \end{bmatrix}$ then find the matrices X and Y .
9. Verify $(AB)' = B'A'$ for the following matrices :
(i) $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 4 \\ -5 \end{bmatrix}$

(i)
$$A = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}$
(ii) $A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$
(iii) $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$

(iv)
$$A = \begin{bmatrix} -1 & 3 & 0 \\ -7 & 2 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} -5 & 0 \\ 0 & 3 \\ 1 & -8 \end{bmatrix}$

(v)
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$

10. Using determinants, show that following points are collinear :

(i)
$$(11,7), (5,5)$$
 and $(-1,3)$

- (ii) (3, 8), (-4, 2) and (10, 14)
- (iii) (-2, 5), (-6, -7) and (-5, -4)
- **11.** Find the value of x if (3, -2), (x, 2) and (8, 8) are collinear points.

12. Using determinants, find the value of k if the area of the triangle formed by the points

(-3, 6), (-4, 4) and (k, -2) is 12 sq. units.

- 13. If the area of triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4) then find the value of k.
- 14. Find the equation of the line passing from (3, 2) and (-4, -7) using determinants.

6Marks Questions

1. Solve the following system of linear equations by matrix method :

(i)
$$x - y + 2z = 7$$
, $3x + 4y - 5z = -5$, $2x - y + 3z = 12$
(ii) $x + y + z = 6$, $y + 3z = 11$, $x - 2y + z = 0$
(iii) $3x + y + z = 10$, $2x - y - z = 0$, $x - y + 2z = 1$
(iv) $2x + 3y + 3z = 5$, $x - 2y + z = -4$, $3x - y - 2z = 3$
(v) $2x + 3y + 3z = 5$, $x - 2y + z = -4$, $3x - y - 2z = 3$
(vi) $x - y + 2z = 2$, $3x + 4y - 5z = 2$, $2x - y + 3z = 4$
(vii) $x + y - z = 3$, $2x + 3y + z = 10$, $3x - y - 7z = 1$
(viii) $x + y + z = 3$, $5x - y - z = 3$, $3x + 2y - 4z = 1$
(ix) $2x + 3y + 3z = 5$, $x - 2y + z = -4$, $3x - y - 2z = 3$
(x) $5x + y - z = -6$, $2x - 3y + 4z = 3$, $7x + y - 3z = -12$

2. Express the following matrices as a sum of a symmetric matrix and a skew-symmetric matrix :

(i)	$\begin{bmatrix} 2\\ -1\\ 7 \end{bmatrix}$	0 4 2	3 8 9	(ii)	3 0 5	6 7 1	2 8 9
(iii).	5 -2 6	1 3 3	2 0 7	(iv)	$\begin{bmatrix} 2\\ -3\\ 5\end{bmatrix}$	5 6 2	8 0 1

		UN	<u>IT – III</u>	
		Continuity &	Differentiability	L
		Multiple Choice (Questions (1 Marl	<u>(s)</u>
1	If $f(x) = \begin{cases} kx + 1, & x \\ 3x - 5, & x \end{cases}$	≤ 5 is continuous ther > 5	value of k is :	
	$(a)\frac{9}{5}$	(b) $\frac{5}{9}$	(c) $\frac{5}{3}$	(d) $\frac{3}{5}$
2	If $f(x) = \begin{cases} kx^2, & x \le 2\\ 3, & x > 2 \end{cases}$	is continuous then va	lue of k is :	
	$(a)\frac{2}{3}$	(b) $\frac{4}{3}$	(c) $\frac{3}{2}$	(d) $\frac{3}{4}$
3	If $f(x) = \begin{cases} mx - 1, x \\ 3x - 5, x \end{cases}$	$\frac{5}{5}$ is continuous the	n value of m is :	
	(a) $\frac{11}{5}$	(b) <u>5</u>	(c) $\frac{5}{3}$	(d) $\frac{3}{5}$
4	If $f(x) = \begin{cases} mx^2, x \leq 6x - 5, x \end{cases}$	5 > 5 is continuous ther	value of m is :	
_	(a)-1	(b)4	(c)3	(d)1
5	If $f(x) = \begin{cases} \frac{\sin 2x}{3x}, & x \neq \\ m-1, & x \end{cases}$	^{± 0 is continuous then = 0}	value of m is :	
~	(a)2/3	(b)3/2	(c)3/5	(d)5/3
6	If $f(x) = \begin{cases} kx + 1, & x \\ 3x + 5, & x \end{cases}$	≤ 5 is continuous ther > 5	\mathbf{v} value of k is :	
	(a) $\frac{19}{5}$	(b) <u>5</u>	(c) $\frac{5}{3}$	(d) $\frac{3}{5}$
7	If $f(x) = \begin{cases} kx - 1, & x \\ 3x + 5, & x \end{cases}$	≤ 5 is continuous ther	n value of k is :	
	(a) $\frac{21}{5}$	(b) $\frac{5}{19}$	(c) $\frac{5}{21}$	(d) $\frac{19}{5}$
8	If $f(x) = \begin{cases} \frac{\sin 7x}{3x}, x \neq 0\\ m x = 0 \end{cases}$	is continuous at $x = 0$	then value of m is	
	(a) $\frac{3}{7}$	(b) ⁴ / ₇	(c) $\frac{7}{4}$	(d) $\frac{7}{3}$
9	If $y = \log \left[x + \sqrt{x^2} + \right]$	1 then $\frac{dy}{dx}$ is		
	(a) $\sqrt{x^2+1}$	(b) $\frac{1}{\sqrt{x^2+1}}$	(c) $\frac{x}{\sqrt{x^2+1}}$	$(d)\frac{1}{x+\sqrt{x^2+1}}$
10	If $f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & x \neq 2 \\ \frac{x^3 - 8}{x - 2}, & x \neq 2 \end{cases}$	$\frac{2}{2}$ is continuous at $x =$	2 then value of <i>k</i> is	
	(a)8 $(\kappa , x = 1)$	2 (b)2	(c)6	(d)12
11	$\frac{d}{dx}$ {tan ⁻¹ (e^x)} is equal	al to :		
	(a) $e^x \tan^{-1} e^x$	(b) $\frac{e^x}{1+e^{2x}}$	(c) 0	(d) $e^x \sec^{-1} x$
12	If $y = \sin x$ then at x	$=\frac{\pi}{2}$, y_2 is equal to :		
	(a)- 1	(b) 1	(c) 0	(d) $\frac{1}{2}$
13	If $x = 2at$, $y = at^2$ the	en $\frac{dy}{dx}$ is equal to:		
17	(a)2	(b)2 <i>a</i>	(c)2 <i>at</i>	(d) <i>t</i>
14	If $y = \cos^{-1}(e^x)$ then	$\frac{dy}{dx}$ is equal to:	$-e^x$	e
	(a) $e^x \sin^{-1}(e^x)$	(b) $e^x \cos^{-1}(e^x)$	(c) $\frac{1}{\sqrt{1-e^{2x}}}$	(d) $\frac{1}{\sqrt{1-e^{2x}}}$
15	If $y = \sin^{-1}(e^x)$ then	$\frac{dy}{dx}$ is equal to:	- r	- X
	(a) $e^x \sin^{-1}(e^x)$	(b) $e^x \cos^{-1}(e^x)$	(c) $\frac{-e^{x}}{\sqrt{1-e^{2x}}}$	(d) $\frac{e^{x}}{\sqrt{1-e^{2x}}}$
16	$\frac{d}{dx}$ {cot ⁻¹ (e^x)} is equa	ll to :		
	(a) $e^x \tan^{-1} e^x$	(b) $\frac{e^x}{1+e^{2x}}$	(c) $\frac{-e^x}{1+e^{2x}}$	$(d)e^x \sec^{-1} x$

17
 If
$$y = x^2$$
 then $y_1(5)$ is equal to :

 (a)10
 (b)25
 (c)32
 (d) 0

 18
 If $y = \log(\sin x)$ then at $x = \frac{\pi}{4}$, $\frac{dy}{dx}$ is
 (a)0
 (b)-1
 (c)1
 (d) $\sqrt{2}$

 19
 If $y = e^{\log x}$ then $\frac{dy}{dx}$ is
 (a)log $x - x$
 (b) $xe^{\log x}$
 (c)1
 (d) $e^{\log x} \log x$

 20
 If $y = \log(\sec x)$ then $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is
 (a)1
 (b)-1
 (c)0
 (d)10

True/False (1 Marks)

- 1) If y = 10x then $\frac{dy}{dx} = 0$. 2) If y = 500 then $\frac{dy}{dx} = 0$ 3) If $y = \tan x$ then $\frac{dy}{dx} = \sin x$ 4) If $y = \cot x$ then $\frac{dy}{dx} = \log(\cos x)$ 5) If $y = \tan 2x$ then $\frac{dy}{dx} = 2 \sec^2 2x$
- 6) Trigonometric functions are differentiable functions in their respective domains.
- 7) The composition of two continuous functions is continuous.
- 8) Every differentiable function is a continuous function.
- 9) Logarithmic differentiation is essential for the function f when $f(x) = (p(x))^{q(x)}$
- 10) Exponential function is not a continuous function.
- 11) Every continuous function is differentiable.
- 12) A function is called continuous at a point if its limit exists at that point.

2 Marks Questions

1. Find $\frac{dy}{dx}$ for the following parametric functions :

(i)
$$x = a \cos^2 \theta$$
, $y = b \sin^2 \theta$

(ii)
$$x = a(\theta - \sin \theta)$$
, $y = b(1 + \cos \theta)$

(iii) $x = a(\theta + \sin \theta), y = b(1 + \cos \theta)$

(iv)
$$x^2 + y^2 + 2xy = 23$$

(v)
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

- (vi) $y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$
- (vii) $x^3 + 3x^2y + 3xy^2 + y^3 = 81$

4Marks Questions

1) If
$$x = 2\cos\theta - \cos 2\theta$$
, $y = 2\sin\theta - \sin 2\theta$ then find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{2}$.

2) If
$$x = \frac{1-t^2}{1+t^2}$$
, $y = \frac{2t}{1+t^2}$ then prove that $\frac{dy}{dx} + \frac{x}{y} = 0$.

- 3) Differentiate the following w.r.t. x :
 - (i) $x^{\sin x} + (\sin x)^x$ (ii) $x^{\log x} + (\log x)^x$ (iii) $x^{\tan x} + (\tan x)^x$ (iv) $x^{\cos x} + (\sin x)^{\tan x}$ (v) $x^x + (\sin x)^x$ (vi) $x^{\sin^{-1}x} + (\sin^{-1}x)^x$
- 4) Solve the following :
- (i) If $(\sin x)^y = (\sin y)^x$, find $\frac{dy}{dx}$. (ii) If $(\sin x)^y = (\cos y)^x$, find $\frac{dy}{dx}$. (iii) If $y = x^y$ show that $\frac{dy}{dx} = \frac{y^2}{x(1-y\log x)}$. (iv) If $x^y + y^x = \log a$, find $\frac{dy}{dx}$.
- 5) If $y = \sin^{-1} x$ then show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0$.
- 6) If $y = (\sin^{-1} x)^2$ then prove that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 2$.
- 7) If $y = (\tan^{-1} x)^2$ then show that $(1 + x^2)^2 y_2 + 2x(1 + x^2)y_1 2 = 0$.
- 8) If $y = \log(x + \sqrt{x^2 + 1})$ then show that $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$.
- 9) If $y = e^{m \sin^{-1} x}$ then show that $(1 x^2)y_2 xy_1 m^2 y = 0$.
- 10) If $y = e^{m \tan^{-1} x}$ prove that

(i)
$$(1 + x^2) \frac{d^2 y}{dx^2} + (2x - m) \frac{dy}{dx} = 0$$
 (ii) $(1 + x^2)^2 y_2 + 2x(1 + x^2)y_1 - m^2 y = 0$

<u>UNIT – III</u>

True/False

- 1) Function f decreases where f'(x) > 0.
- 2) Function f decreases where f'(x) < 0.
- 3) $f(x) = \sin x$ is strictly decreasing function in $\left|0, \frac{\pi}{2}\right|$.
- 4) The value of function f is maximum at a if f'(a) = 0 and f''(a) < 0.
- 5) Logarithmic function $f(x) = \log x$ is a strictly increasing function.
- 6) Velocity of a moving particle cannot be expressed as derivative of displacement function of the particle.
- 7) The value of function f is maximum or minimum at a if f'(a) = 0.
- 8) The value of function f is minimum at a if f'(a) = 0 and f''(a) < 0.
- 9) When f'(a) = 0 then x = a is called a critical point on the curve y = f(x)
- 10) If a given cylindrical bucket is being filled with water with a given rate then we can evaluate the rate of change of the volume of water cylinder inside the bucket.

2 Marks Questions

- 1. The volume of spherical balloon is increasing at the rate of 25 c.c./s . Find the rate of change of its surface area at the instant when its radius is 5 cm.
- 2. The side of square sheet is increasing at the rate of 3 cm/s. At what rate is the area increasing when the side is 10 cm long?
- 3. The side of square sheet is increasing at the rate of 5 cm/s. At what rate is the perimeter increasing when the side is 7 cm long?
- 4. The radius of spherical soap bubble is increasing at the rate of 0.2 cm/s. Find the rate of change of its volume when its radius is 4 cm.

- 5. The radius of spherical soap bubble is increasing at the rate of 0.8 cm/s. Find the rate of change of its surface area when the radius is 5 cm.
- 6. The edge of a cube is decreasing at the rate of 2 cm/s. Find the rate of change of its volume when the length of edge of the cube is 5 cm.
- 7. The edge of a cube is decreasing at the rate of 2 cm/s. Find the rate of change of its surface area when the length of edge is 6 cm.
- 8. Determine the intervals in which the following functions are increasing or decreasing :

(a) $f(x) = x^3 + 2x^2 - 1$	(b) $f(x) = 30 - 24x + 15x^2 - 2x^3$	(c) $f(x) = 20 - 12x + 9x^2 - 2x^3$
$(d)f(x) = 17 - 18x + 12x^2 - 2x^3$	(e) $f(x) = 20 - 9x + 6x^2 - x^3$	(f) $f(x) = 6 + 12x + 3x^2 - 2x^3$
$(g)f(x) = 2x^3 - 15x^2 + 36x + 1$	(h) $f(x) = x^3 - 6x^2 + 9x + 8$	(i) $f(x) = 2x^3 - 12x^2 + 18x + 5$

6 Marks Questions

- 1. Find the volume of the biggest right circular cone which is inscribed in a sphere of radius 9*cm*.
- 2. Prove that the height of a right circular cylinder of maximum volume, which is inscribed in a sphere of radius *R*, is $\frac{2R}{\sqrt{3}}$.
- 3. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
- 4. A wire of length 25 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What could be the lengths of the two pieces so that the combined area of the square and circle is minimum?
- 5. A wire of length 36 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. What could be the lengths of the two pieces so that the combined area of the square and equilateral triangle is minimum?
- 6. Prove that the perimeter of a right angled triangle of given hypotenuse equal to 5 cm is maximum when the triangle is isosceles.
- 7. Of all rectangles with perimeter 40 cm/100 cm/80 cm find the one having maximum area. Also find the area.
- 8. Find the volume of the largest cylinder that can be inscribed in a sphere of radius R.
- 9. Find the volume of largest cone that can be inscribed in a sphere of radius R.
- 10. Show that height of the cylinder of maximum volume that can be inscribed in a sphere of 30 cm is $\frac{60}{\sqrt{3}}$ cm.
- 11. A window is in the form of rectangle surmounted by a semi-circle opening. If the perimeter of window is 10 cm/20 cm/ 30 cm, find the dimensions of the window so as to admit maximum possible light through the whole opening.
- 12. Show that the height of a closed cylinder of given volume and least surface area is equal to its diameter.
- 13. Find two positive numbers whose sum is 16 and the sum of whose cubes is maximum.
- 14. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
- 15. A square piece of tin of side 18cm is to be made into a box without top, by cutting off small squares from each corner and folding up the flaps to form the box. What should be the side of the small square to be cut off so that the volume of the box is the maximum possible.

INTEGRALS

Fill in the Blanks(1 Marks)

Multiple Choice Questions(1 Marks)

1	$\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$	is equal to :		
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{4}$
2	$\int_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx$	is equal to :		
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{4}$
3	$\int \frac{dx}{2x+3}$ equals:	-	-	
	(a) $\log 2x+3 + c$	(b) $\log 2x - 3 + c$	$(c)\frac{\log 2x+3 }{3}+c$	$(d)\frac{\log 2x+3 }{2}+c$
4	$\int \frac{dx}{2x-5}$ equals:			
	(a) $\log 2x - 5 + c$	(b) $\log 2x + 5 + c$	$(c)\frac{\log 2x-5 }{5}+c$	$(d)^{\frac{\log 2x-5 }{2}}+c$
5	$\int_{-1}^{1} x^3 \cos x dx$ equal	s:		
	(a)0	(b)1/4	(c) <i>π</i>	(d)none of these
6	$\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$	is equal to :		
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{4}$
7	$\int_{-2}^{2} x^{3} dx$ is equal to	:		
	(a)0	(b)4	(c)16/3	(d) $\frac{\pi}{4}$
8	$\int_{-1}^{1} x \sin^2 x dx$ is equ	al to		
		<i>u</i>) ¹	() ¹	(1) 4
	(a)U	(b) <u>-</u>	(c) _ 3	(d)—1
9	$\int_{a}^{1} \frac{dx}{dx}$ is			
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{\epsilon}$
	4	J	т	U

10 $\int_{\pi/6}^{\pi/3} \frac{\cos^4 x}{\sin^4 x + \cos^4 x} dx$ is equal to

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{12}$ (d) $\frac{\pi}{2}$

2 Marks Questions

- 1. Evaluate the following :
 - $(a) \int \frac{(x-4)^3}{x^2} dx \qquad (b) \int \frac{dx}{1-\sin x} \qquad (c) \int \frac{dx}{1+\cos x} \qquad (d) \int \frac{dx}{1+\sin x}$ $(e) \int \frac{dx}{1-\cos x} \qquad (f) \int \frac{e^x 1}{e^x + 1} dx \qquad (g) \int \frac{(\tan^{-1} x)^2}{1+x^2} dx \qquad (h) \int \frac{\sec^2(2\tan^{-1} x)}{1+x^2} dx$ $(i) \int \frac{\sin(\tan^{-1} x)}{1+x^2} dx \qquad (j) \int \frac{dx}{x^2 + 8x 9} \qquad (k) \int \frac{dx}{\sqrt{x^2 5x + 7}} \qquad (l) \int \frac{dx}{\sqrt{x^2 + 4x + 7}}$ $(m) \int \frac{dx}{x^2 + 6x + 5} \qquad (n) \int \frac{dx}{x^2 6x + 18} \qquad (o) \int x \sqrt{x + 2} dx \qquad (p) \int \frac{3 2\sin x}{\cos^2 x} dx$
- 2. Compute the following :
 - $(a) \int \frac{\log x}{x} dx \qquad (b) \int \frac{e^{\tan^{-1} x}}{1+x^2} dx \qquad (c) \int \frac{2x}{1+x^2} dx \qquad (d) \int \frac{x^2}{1+x^3} dx$ $(e) \int \frac{6x-8}{3x^2-8x+5} dx \qquad (f) \int \frac{2x+9}{x^2+9x+20} dx \qquad (g) \int e^x \left(\tan^{-1} x + \frac{1}{1+x^2}\right) dx$

4 Marks Questions

- 3. Integrate the following : (a) $\sin^2 x \cos^3 x$ (b) $\cos^2 x \sin^3 x$ (c) $\frac{1}{1-\cot x}$ (d) $\frac{1}{1+\cot x}$ (e) $\frac{1}{1-\tan x}$ (f) $\frac{1}{1+\tan x}$ 4. Evaluate the following integrals : (a) $\int \frac{1-\tan x}{1+\tan x} dx$ (b) $\int \frac{1+\tan x}{1-\tan x} dx$ 5. Integrate the following functions: (a) $x \sec^2 x$ (b) $x^2 e^x$ (c) $x \cos 3x$ (d) $x \sin x$ 7. Integrate the following functions :
 - (a) $e^x \sin 2x$ (b) $e^{3x} \cos 5x$ (c) $e^x (\cot x + \log \sin x)$
- 8. Integrate the following functions :

(a)
$$\frac{1}{(x+1)(x+2)(x+3)}$$
 (b) $\frac{1}{x(x-1)(x-2)}$ (c) $\frac{1}{x^3-1}$ (d) $\frac{1}{(1-x)(1+x^2)}$
(e) $\frac{x}{(x-2)(x^2+4)}$ (f) $\frac{1}{x(x^2+2)}$

9. Integrate the following functions :

(a)
$$\frac{2x}{\sqrt{(x+1)(x-2)}}$$
 (b) $\frac{4x+5}{\sqrt{x^2+x-3}}$ (c) $\frac{3x+5}{\sqrt{x^2-8x+7}}$

12 Evaluate the following integrals :

(a)
$$\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

(b) $\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\cot x}} dx$
(c) $\int_{0}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx$
(e) $\int_{0}^{1} |x - 5| dx$
(f) $\int_{-6}^{6} |x + 2| dx$
(h) $\int_{0}^{\pi/2} \log(\cos x) dx$

6 Marks Questions

Evaluate the following :

$$1. \quad \int \frac{x^2+1}{x^4+1} dx$$

- $2. \quad \int \frac{x^2}{x^4+1} dx$
- $3. \quad \int \frac{1}{x^4+1} dx$
- $4. \quad \int_0^{\pi/2} \log \cos x \, dx$
- $5. \quad \int \frac{2x}{(x^2+1)(x^2+4)} dx$
- $6. \quad \int \frac{1}{x^3 1} dx$
- 7. $\int (\sqrt{\cot x} + \sqrt{\tan x}) dx$
- $8. \quad \int_0^\pi \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$

APPLICATIONS OF INTEGRALS

2 Marks Questions

- 1. Using integration, find the area of the circle :
 - (i) $x^2 + y^2 = 4$ (ii) $x^2 + y^2 = 9$ (iii) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (iv) $\frac{x^2}{9} + \frac{y^2}{25} = 1$
 - (v) $\frac{x^2}{16} + \frac{y^2}{36} = 1$ (vi) $\frac{x^2}{25} + \frac{y^2}{16} = 1$

2. Using integration, find the area bounded between parabola $x^2 = 4y$ and line y = 4.

- 3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and y axis in first quadrant.
- 4. Draw a rough sketch to indicate the region bounded between the curve $y^2 = 4x$, x = 3. Also find the area of this region.
- 5. Find the area of the region bounded by the curves $y^2 = 8x$, x = 1, x = 5 in the first quadrant.
- 6. Find the area of the region bounded by the parabola $x^2 = 9y$ and lines x = 1, x = 4 and x-axis.
- 7. Find the area bounded by the lines x = 2, x = 7, y = 9 and x -axis.
- 8. Find the area bounded by the lines y = x, x = 5 and x axis.

DIFFERENTIAL EQUATIONS

Multiple Choice Questions(1 Marks)

1	Integrating factor of differential equation $\frac{dy}{dx} - \frac{y}{x} = 2x$ is :						
	(a) $\frac{1}{x}$		(b) <i>x</i>	(c) $\frac{1}{x^2}$	(d) 1		
2	Order o	of differential equation	$\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + y$	= 0 is :			
	(a) 3		(b) 2	(c) 0	(d) 1		
3	Which	of the following differer	ntial equations is	a homogeneous type	of differential equation	n :	
	(a)(4 <i>x</i>	+6y+5)dy-(3y+2)	2x+4)dx=0	(b) $xydx - $	$(x^3 + y^3)dy = 0$		
	(c) $(x^3 -$	$+2y^2)dx+2xydy=0$	0 dv	$(d)y^2dx + 0$	$(x^2 - xy - y^2)dy = 0$)	
4	Integra	ting factor of differentia	al equation $\frac{dy}{dx} + \frac{dy}{dx}$	$\frac{1}{x} = 2x$ is:			
	(a) $\frac{1}{x}$		(b) <i>x</i> ²	(c) $\frac{1}{x^2}$	(d) <i>x</i>		
5	Integra	ting factor of differentia	al equation $\frac{dy}{dx} + \frac{2}{3}$	$\frac{2y}{x} = 2x$ is:			
	(a) <u>1</u>	(1	b) x^2	(c) $\frac{1}{r^2}$	(d) <i>x</i>		
6	Integra	ting factor of differentia	al equation $\frac{dy}{dx}$ +	$y \sec x = 2x$ is :			
	(a)sec 2	$x + \tan x$ (b) sec x tan x	(c) <i>e</i> ^{sec x}	(d) <i>e</i>	$\sec x + \tan x$	
7	Integra	ting factor of differentia	al equation $\frac{dy}{dx}$ +	y=2x is :			
	(a) $\frac{1}{r}$		(b) <i>x</i>	(c) <i>e</i> ^{<i>x</i>}	(d) <i>e</i>	-x	
8	^ Order c	of differential equation ($\frac{d^3y}{d^3y} - 4\left(\frac{d^2y}{d^2}\right)^4 +$	v = 0 is			
	(a)3		$dx^3 = dx^2$	y = 0 13 (c)1	(d))		
9	The nu	mber of arbitrary consta	ants in the genera	al solution of a differen	ntial equation of secon	d order are	
	(a)1		(b)2	(c)3	(d)0		
10	Degree	Degree of the differential equation $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^4 + y = 0$ is					
	(a)1		(b)2	(c)3	(d)4		
	Fill Ups(1 Marks)						
	1) Order of the differential equation $\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + y = 0$ is						
	$\frac{dx^2}{dx} = \frac{dx}{dx} = \frac{dx}{dx}$						
	2) Degree of the differential equation $\frac{dx^2}{dx^2} - \left(\frac{dx}{dx}\right) + y = 0$ is						
	3)	3) Integrating factor of differential equation $\frac{dy}{dx} + xy = \sin x$ is					
	4)	Order and degree (if	defined) of a diff	erential equation are a	always	integers.	
	5)	Integrating factor of	$\frac{dx}{dy} + Px = Q$ is _				
	6)	(x+y)dy - (x-2y)	dx = 0 is a	differe	ential equation.		
	7)	substituti	on is applied to s	olve a homogeneous o	lifferential equation.		
	8)	8) There arenumber of arbitrary constants in the general solution of differential equation of order 3.					
	9)	y = substitutio	on is used in the $\frac{d}{d}$	$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ type of hom	ogeneous differential	equation.	
	10)	After correct substitud differential equation	ition, a homogen	eous differential equa	tion becomes	type of	

4 Marks Questions

Solve the following differential equations :

1)
$$\frac{dy}{dx} = \log x$$
 19)
2) $\frac{dy}{dx} + \frac{1+y^2}{y} = 0$ 20)
3) $\frac{dy}{dx} = \sin^2 y$ 21)
4) $\frac{dy}{dx} = e^y \sin x$ 22)
5) $\log \frac{dy}{dx} = ax + by$ 23)
6) $x^2(y+1)dx + y^2(x-1)dy = 0$ 24)
7) $\sec^2 x \tan y \, dx - \sec^2 y \tan x \, dy = 0$ 25)
8) $xdy + ydx = xydx; y(1) = 1$ 26)
10) $\frac{dy}{dx} = y \tan x; y(0) = 1$ 27)
11) $\frac{dy}{dx} = y \sin 2x; y(0) = 1$ 28)
12) $(x^2 + xy)dy + (3xy + y^2)dx = 0$ 29)
13) $(y^2 - x^2)dy - 3xydx = 0$ 30)
14) $2xydx + (x^2 + 2y^2)dy = 0$ 31)
15) $x^2dy - (x^2 + xy + y^2)dx = 0$ 32)
16) $\cos(\frac{dy}{dx}) = \frac{1}{9}; y(0) = 2$ 33)
17) $(x^2 + y^2)dx + 2xydy = 0$ 34)
18) $(x^2 - 2y^2)dx + xydy = 0$

19)
$$\frac{dy}{dx} + \frac{y}{x} = e^{x}$$

20) $\frac{dy}{dx} - 4y = e^{2x}$
21) $x\frac{dy}{dx} + y = x^{3}$
22) $\frac{dy}{dx} + 2y = \sin 5x$
23) $\frac{dy}{dx} + 3y = \cos 2x$
24) $x\frac{dy}{dx} + y = x \log x$
25) $(1 + x^{2})\frac{dy}{dx} + y = \tan^{-1} x$
26) $\frac{dy}{dx} = 2x + y; y(0) = 0$
27) $\frac{dy}{dx} = 4x + y; y(0) = 1$
28) $x\frac{dy}{dx} + y = x^{3}; y(2) = 1$
29) $xy' - y = \log x; y(1) = 0$
30) $x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
31) $\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$
32) $(1 + x^{2})dy + 2xydx = \cot x dx$
33) $x\frac{dy}{dx} + 2y = x^{2}\log x$

(4)
$$x^2 dy - (3x^2 + xy + y^2) dx = 0$$
; $y(1) = 1$

Vector Algebra

True/False(1 Mark)

- 1) Scalar product of two perpendicular vectors is zero.
- 2) Vector product of two collinear vectors is zero.
- 3) $|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|$ is triangle inequality.
- 4) $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ is Cauchy-Schwartz inequality.
- 5) $\hat{\iota} \times \hat{\iota} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = \vec{0}$.
- 6) $\hat{\iota}.\hat{\iota}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=0$
- 7) $\vec{a} \times \vec{b}$ is parallel to both the vectors \vec{a} and \vec{b} .
- 8) Vectors $3\hat{\imath} + 2\hat{j} \hat{k}$ is parallel to the vector $\hat{\imath} + 6\hat{j} 3\hat{k}$.
- 9) Area of a parallelogram can be calculated by using vector product of two vectors.

10) Area of a triangle cannot be calculated by using vector product of two vectors.

Multiple Choice Questions(1 Mark)

1	If $\vec{a}.\vec{b} = \vec{a} \times \vec{b} $ then angle between vector \vec{a} and vector \vec{b} is :					
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
2	Magnitude of the	e vector $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}$	$\frac{1}{3}k$ is :			
	(a)—1	(b)1	(c)0	$(d)\frac{1}{3}$		
3	If $\sqrt{3} \vec{a} \cdot \vec{b} = \vec{a}\rangle$	ee ec eta ert then angle betwee	en vector \vec{a} and vector \vec{b} is :	-		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
4	If $\vec{a} \cdot \vec{b} = \sqrt{3} \vec{a}\rangle$	\vec{b} then angle betwee	en vector \vec{a} and vector \vec{b} is :	, i i i i i i i i i i i i i i i i i i i		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
5	If $ec{a}_{\cdot}ec{b}=0$ then	n angle between vector	$ec{a}$ and vector $ec{b}$ is :	-		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
6	Name of the inequality $\left \vec{a}.\vec{b}\right \leq \left \vec{a}\right \left \vec{b}\right $ is :					
	(a)Cauchy-Schwa	rtz Inequality	(b)Triangle Inequality			
	(c)Rolle's Theore	m Λ Λ Λ	(d)Lagrange's Mean Value The	orem		
7	Magnitude of ve	ector $\vec{a} = 3i + j + k$ is	5:			
	(a) 3	(b) $\sqrt{10}$	(c) $\sqrt{11}$	(d) $\sqrt{12}$		

8 Projection of $\vec{a} = 3i + j + k$ on $\vec{b} = i - 2j - k$ is:

$$(a)\frac{2}{\sqrt{6}} (b)0 (c)\frac{1}{\sqrt{6}} (d)\sqrt{6}$$
9 If \vec{a} is a non-zero vector then $|\vec{a} \times \vec{a}|$ is equal to
(a) $|\vec{a}| (b)|\vec{a}|^2 (c)1 (d)0$
10 If $\vec{a} = i + 2j - 3k$ and $\vec{b} = 2i - 2j - k$ then $\vec{a} \cdot \vec{b}$ is equal to
(a) 1 (b)0 (c) - 1 (d)3

2 Marks Questions

- 1. Adjacent sides of a parallelogram are given by $\hat{i} + 2\hat{j} \hat{k}$ and $3\hat{i} \hat{j} + 5\hat{k}$. Find a unit vector along a diagonal of the parallelogram.
- 2. Adjacent sides of a parallelogram are given by $6\hat{i} \hat{j} + 5\hat{k}$ and $\hat{i} + 5\hat{j} 2\hat{k}$. Find the area of parallelogram.
- 3. Find the area of triangle whose sides are given by the vectors $\hat{i} 2\hat{j} + \hat{k}$ and $4\hat{i} + \hat{j} 7\hat{k}$.
- 4. Find the value of p if the vectors $p\hat{\imath} + \hat{\jmath} + 4\hat{k}$ and $2\hat{\imath} \hat{\jmath} + 3\hat{k}$ are perpendicular to each other.
- 5. Find a vector of magnitude 8units along $\vec{a} = 2\hat{i} 4\hat{j} + \hat{k}$
- 6. Find a unit vector along $\vec{a} = 5\hat{\iota} + 3\hat{j} 4\hat{k}$
- 7. If $\vec{a} = 2\hat{\imath} 4\hat{\jmath} + \hat{k}$, $\vec{b} = 3\hat{\imath} \hat{\jmath} 5\hat{k}$ then find $|\vec{a} \times \vec{b}|$.
- 8. Find the projection of $\vec{a} = 2\hat{i} 4\hat{j} + \hat{k}$ on $\vec{b} = 3\hat{i} \hat{j} 5\hat{k}$.
- 9. Find the area of parallelogram whose diagonals are given by vectors:

(i)
$$\vec{a} = 2\vec{i} + \vec{j} + \vec{k} & \vec{b} = \vec{i} - \vec{k}$$

(ii)
$$\vec{a} = \vec{i} + \vec{j} - 4\vec{k} \otimes \vec{b} = \vec{i} + 8\vec{j} + 2\vec{k}$$

10. Find the angle between the following vectors:

(i)
$$-2i-2j+4k$$
 and $-2i+4j-2k$

(ii)
$$\bigwedge^{\wedge} \bigwedge^{\wedge} \bigwedge^{\wedge} \bigwedge^{\wedge} \bigwedge^{\wedge} i + 2j + k$$
 and $3i + 2j - 7k$

3/4 Marks Questions

- **1.** For any two vectors \vec{a} and \vec{b} prove that $|\vec{a},\vec{b}| \le |\vec{a}||\vec{b}|$. Also write the name of inequality.
- 2. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$. Also write the name of inequality.
- 3. Find the area of triangle whose vertices are :
 - (i) A(2,3,5), B(3,5,8), C(2,7,8)
 - (ii) A(1,2,4), B(3,1,-2), C(4,3,1)
 - (iii) P(1, 1, 1), Q(1, 2, 3), R(2, 3, 1)
- 4. Let \vec{a} , \vec{b} , \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one of them is perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.
- 5. If $\vec{a} = 5\hat{i} + \hat{j} 2\hat{k}$, $\vec{b} = 7\hat{i} + 2\hat{j} 3\hat{k}$, $\vec{c} = 2\hat{i} 9\hat{j} \hat{k}$ find a vector of magnitude 7 units parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$.
- 6. If $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$, $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$, then find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$.

Three Dimensional Geometry

Multiple Choice Questions(1 Marks)

1	Direction ratios of straigh	It line $ec{r}=\hat{\imath}-4\hat{\jmath}+5\widehat{k}+s(2)$	$2\hat{\imath} - 3\hat{\jmath} + 2\hat{k})$ are :	
	(a)< 2, 3, 2 >	(b) < 2, $-3, -2 >$	(c)<−2,−3,2>	(d)< 2, $-3, 2 >$
2	Direction ratios of line give	ven by $\frac{x-1}{3} = \frac{2y+6}{12} = \frac{1-z}{-7}$ are	2:	
	(a) < 3, 12, −7 >	(b) $< 3, -6, 7 >$	(c) < 3, 6, 7 >	(d)< 3, 6, $-7 >$
3	Direction ratios of a line p	bassing through the points $(\cdot$	-2, 1, 0) & (3, 2, 1) are	
	(a) < 5, 1, 1 >	(b) < -5 , 1, $-1 >$	(c) < 5, −1, 1 >	(d)< $-5, -1, 1>$
4	Which of the following se	ts of points are collinear :		
	(a) $(1, 3, -4), (1, -2, 7)$ 8	k (3 , 8 , − 1 1)	(b) $(2, 3, -4), (2, -2, 3)$ &	e (3 , 5 , -11)
	(c) $(2, 3, -4), (1, -2, 3)$	k (3 , 8 , − 1 1)	(d) $(2, 3, -4), (1, -2, 3)$ 8	& (2 , 8 , 11)
5	Vector equation of the lin	he $\frac{x+4}{5} = \frac{y-5}{3} = \frac{z-8}{-3}$ is		
	$(a)\vec{r}=4\hat{\iota}-5\hat{j}-8\hat{k}+\mu$	$(5\hat{\imath}+3\hat{j}-3\hat{k})$	(b) $ec{r}=-4\hat{\imath}+5\hat{j}+8\widehat{k}+$	$\mu(5\hat{\iota}+3\hat{j}-3\hat{k})$
	(c) $ec{r}=5\hat{\imath}+3\hat{j}-3\widehat{k}+\mu$	$(4\hat{\iota}-5\hat{j}-8\hat{k})$	(d) $ec{r}=5\hat{\imath}+3\hat{j}-3\widehat{k}+\mu$	$(-4\hat{\imath}+5\hat{j}-8\hat{k})$
6	Cartesian equation of the	line $ec{r}=7\hat{\imath}-5\hat{\jmath}+3\widehat{k}+\mu$	$ig(9 oldsymbol{\hat{\imath}} - oldsymbol{\hat{j}} + 6 oldsymbol{\hat{k}}ig)$ is	
	(a) $\frac{x+9}{7} = \frac{y-1}{-5} = \frac{z+6}{3}$	(b) $\frac{x-9}{7} = \frac{y+1}{-5} = \frac{z+6}{3}$	(c) $\frac{x+7}{9} = \frac{y-5}{-1} = \frac{z+3}{6}$	(d) $\frac{x-7}{9} = \frac{y+5}{-1} = \frac{z-3}{6}$
7	Angle between the lines ²	$\frac{x+1}{2} = \frac{y-5}{-1} = \frac{z}{1}$ and $\frac{x}{3} = \frac{y+7}{5} = \frac{y+7}{5}$	$\frac{z-8}{-1}$ is	
	(a) $\pi/3$	(b) $\pi/2$	(c) $\pi/6$	(d)0
8	Direction cosines of a line	e making equal angles with c	oordinate axes are	
	(a) $< \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} >$	(b) $< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} >$	(c)< 1, 1, 1 >	(d)< 0, 1, 0 >
9	Direction ratios of a line r	making equal angles with co	ordinate axes are	
	(a) $< \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} >$	(b) $< \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} >$	(c)< 1, 1, 1 >	(d)< 0, 1, 0 >
10	If direction ratios of a line	e are < 9 , -6 , $2 >$ then its di	rection cosines are	
	(a) $< \frac{-9}{11}, \frac{6}{11}, \frac{2}{11} >$	(b) $< \frac{9}{11}, \frac{-6}{11}, \frac{2}{11} >$	(c) $< \frac{9}{7}, \frac{-6}{7}, \frac{2}{7} >$	(d) $< \frac{9}{5}, \frac{-6}{5}, \frac{2}{5} >$

True/False(1 Mark)

- 1) 3x + 2y 9z = 19 is an equation of a line.
- 2) Direction cosine of y –axis are < 0, 1, 0 >.
- 3) Point (2, -3, -5) lies on the line $\frac{x-2}{3} = \frac{y+3}{4} = \frac{z+5}{7}$.
- 4) The equation of a line parallel to the vector $2\hat{i} \hat{j} + 3\hat{k}$ and passing through the point (5, -1, 3) is $\vec{r} = 5\hat{i} \hat{j} + 3\hat{k} + \mu(2\hat{i} \hat{j} + 3\hat{k})$.
- 5) The angle between two lines with direction ratios < l, m, n > and < a, b, c > is given by $\sin \theta = \frac{la+mb+nc}{\sqrt{a^2+b^2+c^2}\sqrt{l^2+m^2+n^2}}$.
- 6) Direction ratios of a line which passes through the points (1, 2, 3) and (4, 1, -2) are < 3, -1, -5 >.
- 7) Direction ratios of a line which makes equal angles with coordinate axes are < 0, 0, 0 >.
- 8) Direction ratios of line are < 1, 0, 0 >, then its direction cosines are < 1, 0, 0 >.
- 9) Direction ratios and direction cosines of a given line cannot be same numerically.
- 10) We can find the equation of a line if we have two points on the line.

2/3 Marks Questions

- 1. Find the equation of a line which passes through the points (3, 6, -7) and (5, -1, 4).
- 2. Find the direction cosines of a line passing through the points (7, -1, 2) and (3, 4, -7).
- 3. Find the direction ratios and direction cosines of a line which makes equal angles with the coordinate axes.
- 4. Find the direction cosines of sides of a triangle whose vertices are (1, 2, -3), (9, -3, 7) and (5, 3, -2).
- 5. Find the angle between the lines :

(i)
$$\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \mu\left(3\vec{i} - \vec{j} + \vec{k}\right) \& \vec{r} = -3\vec{i} - 7\vec{j} + 6\vec{k} + \lambda\left(-3\vec{i} + 2\vec{j} + 4\vec{k}\right)$$

(ii)
$$\vec{r} = 2\vec{i} - \vec{j} - \vec{k} + \mu \left(3\vec{i} - 5\vec{j} + 2\vec{k} \right) \& \vec{r} = \vec{i} + 2\vec{j} + \vec{k} + \lambda \left(\vec{i} - \vec{j} + \vec{k} \right)$$

(iii)
$$\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{1} \& \frac{x-2}{2} = \frac{y+1}{1} = \frac{z+1}{2}$$

(iv)
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \& \frac{x-2}{3} = \frac{y-4}{5} = \frac{z-5}{5}$$

Find the value of *m* if the lines $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z-5}{5}$ and $\frac{x-3}{5} = \frac{y-2}{5} = \frac{z+5}{5}$ are normanicular to each other

6. Find the value of *m* if the lines $\frac{x+2}{3} = \frac{y-1}{2m} = \frac{z-2}{7}$ and $\frac{x-3}{4} = \frac{y-2}{7} = \frac{z+5}{8m}$ are perpendicular to each other.

6/4 Marks Questions

1. Find the shortest distance between the following pairs of lines :

(i)
$$\vec{r} = 3i + 8j + 3k + \mu \left(3i - j + k\right) \& \vec{r} = -3i - 7j + 6k + \lambda \left(-3i + 2j + 4k\right)$$

(ii)
$$\vec{r} = 2\vec{i} - \vec{j} - \vec{k} + \mu \left(3\vec{i} - 5\vec{j} + 2\vec{k} \right) \& \vec{r} = \vec{i} + 2\vec{j} + \vec{k} + \lambda \left(\vec{i} - \vec{j} + \vec{k} \right)$$

(iii) $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{1} \& \frac{x-2}{2} = \frac{y+1}{1} = \frac{z+1}{2}$

(iv)
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \& \frac{x-2}{3} = \frac{y-4}{5} = \frac{z-5}{5}$$

(v) $\frac{3-x}{2} = \frac{8-2y}{-10} = \frac{z-1}{1} \& \frac{3x-6}{9} = \frac{5-y}{1} = \frac{4-2z}{8}$

LINEAR PROGRAMMING

Multiple Choice Questions(1 Mark)

1 All points of feasible region are :					
	(a)infeasible solutions	s (b)feasible solutions	(c)optimal solutions	(d)none of these	
2	Corner points of the f	easible region are			
	(a)optimal solutions	(b)useless points	(c)infeasible solutions	(d)none of these	
3	Common area for eac	h constraint is called :			
	(a)infeasible region	(b)feasible region	(c)useless area	(d)none of these	
4	Maximum value of Z	=4x+3y subject to th	e constraints $x + y \leq 4$, $x, y \ge 0$ is	
	(a)16	(b)12	(c)10	(d)20	
5	Minimum value of Z =	=4x+3y subject to th	e constraints $x + y \leq 4$	$x, y \ge 0$ is	
	(a)16	(b)12	(c)10	(d)20	
6	Maximum value of Z	=2x+3y-1 subject	to the constraints $x + y$	\leq 5, $x, y \geq$ 0 is	
	(a)14	(b)12	(c)10	(d)9	
7	Minimum value of Z =	= 5x + 3y + 2 subject t	to the constraints $x + y$	\leq 7, $x, y \geq$ 0 is	
	(a)37	(b)35	(c)21	(d)23	
8	Constraints of LPP are	:			
	(a)Always quadratic			lways linear	
	(c)May be linear or qu	adratic depending on th	ne problem (d)N	/lay be cubic some times	
9	Objective function of LPP is				
	(a)Always quadratic		(b)A	lways linear	
	(c)May be linear or quadratic depending on the problem (d)May be cubic some times				
10	Minimum value of Z =	= 5x + 3y + 2 subject t	to the constraints $x + y$	\leq 7, $x, y \geq$ 0 on the point	
	(a)(7,0)	(b)(0,7)	(c)(3,4)	(d)(4,3)	

True/False(1 Mark)

- 1) Point (2,3) is contained in the half plane $x + y \le 0$.
- 2) Origin is contained in the half plane $2x + 3y \le 12$.
- 3) Maximum value of Z = 4x + y for the constraint $x + y \le 12$, x, y > 0 is 48.
- 4) Any point outside the feasible region is called an infeasible solution.
- 5) When feasible region is bounded then objective function has both maximum and minimum values.
- 6) Subject to the constraints $x + y \le 4$, $x \ge 0$, $y \ge 0$, maximum value of Z = 3x + 4y is at (0, 4).
- 7) The points within and on the boundary of feasible region do not represent the feasible solutions.
- 8) The problems which seeks to maximize or minimize profit or loss can be solved using linear programming.
- 9) The inequalities of a linear programming problem are not called constraints.
- 10) The maximum or minimum value of objective function is called optimal solution.

4 Marks Questions

Solve the following LPP graphically:

- 1. Maximize & Minimize :
 - (i) Z = 10x + 7y subject to the constraints $3x + y \le 9$, $3x + 2y \le 12$, $x, y \ge 0$.
 - (ii) Z = x + 2y subject to the constraints $7x + 3y \le 21$, $x + y \ge 3$, $x y \le 0$, $x, y \ge 0$.
 - (iii) Z = 4x + 2y subject to the constraints $8x + 9y \le 72$, $4x + y \ge 8$, $2x y \ge 0$, $x, y \ge 0$.
 - (iv) Z = 5x + 7y subject to the constraints $x + y \ge 4$, $x + 3y \le 12$, $x 2y \ge 0$, $x, y \ge 0$.
 - (v) Z = 3x + 6y subject to the constraints $x + y \le 6$, $2x + y \ge 6$, $2x y \le 0$, $x, y \ge 0$.
 - (vi) Z = 4x + 5y subject to the constraints $x + y \le 6$, $2x + y \ge 6$, $x y \ge 0$, $x, y \ge 0$.
 - (vii) Z = 8x + y subject to the constraints $x + y \le 8$, $2x + y \ge 8$, $x 2y \le 0$, $x, y \ge 0$.
 - (viii) Z = 3x + 7y subject to the constraints $x + y \le 7$, $x + y \ge 3$, $x \le 6$, $y \le 6$, $x, y \ge 0$.
 - (ix) Z = 8x + 5y 2 subject to the constraints $x + y \le 8$, $x + y \ge 5$, $x \le 7$, $y \le 7$, $x, y \ge 0$
 - (x) Z = 7x + 5y 1 subject to the constraints $x + y \le 10$, $x + y \ge 5$, $x \le 9$, $y \le 9$, $x, y \ge 0$

PROBABILITY

Multiple Choice Questions(1 Mark)

1	If $P(A) = \frac{1}{2}$, $P(A) = \frac{1}{2}$	$B) = \frac{3}{8}$ and $P(A \cap B)$	$=\frac{1}{5}$ then $P(A B)$	is equal to :		
	(a) $\frac{2}{5}$	(b) 8 15	(c) $\frac{2}{3}$		(d) ⁵ / ₈	
2	If A and B are ind	ependent events and	$P(A) = \frac{1}{2}$, $P(B) =$	$=\frac{3}{8}$ then $P(A)$	$\cap B$) is equal to :	
	(a) $\frac{3}{4}$	(b) $\frac{3}{8}$	(c) $\frac{3}{16}$		(d) $\frac{1}{16}$	
3	If $P(A) = \frac{1}{2}$, $P(A) = \frac{1}{2}$	$B) = \frac{3}{8}$ and $P(A \cap B)$	$=\frac{1}{5}$ then $P(B A)$	is equal to :		
	(a) $\frac{2}{5}$	(b) $\frac{8}{15}$	(c) $\frac{2}{3}$		(d) $\frac{5}{8}$	
4	Probability of getti	ing even prime numbe	er on both dice ,on a	throw of a pa	ir of die, is :	
	(a)1/6	(b)2/35	(4	c)1/36	(d)5/36	
5	If $P(A) = \frac{1}{2}$, $P(B)$	$B) = \frac{3}{8}$ and $P(A \cup B)$	$=\frac{4}{5}$ then $P(A B)$	is equal to :		
	(a) $\frac{1}{5}$	(b) $\frac{8}{15}$	(c) $\frac{2}{3}$		(d) <u>5</u>	
6	If E is any event th	nen P(E) belongs to the	e interval :			
	(a)(1,10)	(b) $(0, 1)$	(c) [0, 1]		(d) [10, 20]	
7	If $P(E) = \frac{5}{7}$ then I	P(not E) is				
	(a) 5	(b) 7	(4	c) 7	(d) $\frac{2}{7}$	
8	A coin is marked w	vith head on both side	s then on tossing the	e coin probabi	lity of getting head is :	
	(a) $\frac{1}{2}$	(b)0	(c)1		(d)2	
9	Probability of getti	ing an ace card on dra	wing one card from	a well shuffled	deck of 52 cards is :	
	(a)1/13	(b)1/4	(c)1/52		(d)none of these	
10	Probability of 53 N	ondays in a leap year،	is	1		
	(a) $\frac{2}{53}$	(b) ² / ₇	$(c)\frac{1}{53}$	(d) 1 7		
11	Probability of 53 N	Iondays in a non-leap	year is			
	$(a)\frac{2}{53}$	(b) ² /7	$(c)\frac{1}{53}$	(d) $\frac{1}{7}$		
12	If \vec{E} is any event the second se	hen $P(not E)$ belongs	to the interval :	,		
	(a)(1,10)	(b) (0, 1)	(c) [0, 1]	(d) [10, 2	20]	
13	If three coins are t	ossed once, then getti	ng at least one head	ls is	-	
	(a) 3	(b) 7	(c) 5	$(d)\frac{1}{2}$		
14	There are 3 red ba	lls, 4 white balls and 7	blue balls in a bag.	One ball is dra	wn at random from the ba	ag.
	Probability of drav	ving a white ball is				
	$(a)\frac{2}{7}$	(b) $\frac{3}{14}$	(c) $\frac{7}{14}$	(d)0		
15	There are 3 red ba	lls, 4 white balls and 7	blue balls in a bag.	One ball is dra	wn at random from the ba	ag.
	Probability of drav	ving a green ball is				
	$(a)\frac{2}{7}$	(b) $\frac{3}{14}$	(c) $\frac{7}{14}$	(d)0		
16	If $\stackrel{\prime}{E}$ and F are inde	ependent events , ther	17			
	(a) $P(E \cup F) = P(E)$	(E) + P(F)	$(c)P(E \cap F) =$	P(E) + P(F)		
	(c) $P(E \cap F) = P($	\boldsymbol{E}). $\boldsymbol{P}(\boldsymbol{F})$	(d) <i>P</i> (<i>E</i> ∩ <i>F</i>) :	= 0		

Fill in the Blanks(1 Mark)

1) If
$$P(A) = \frac{1}{5}$$
 then $P(not A) =$ ____

- 2) In a throw of a pair of dice probability of getting a doublet is ______
- 3) Probability of occurrence of sure event = _____
- 4) Probability of occurrence of impossible event = _____
- 5) $P(A \cup B) = P(A) + P(B)$ _____
- 6) $P(A) + ___ = 1$
- 7) If *A* and *B* are independent events then $P(A \cap B) =$ _____

8) If
$$P(A) = \frac{1}{2}$$
 and $P(B) = 0$ then $P(A|B)$ is _

- 9) If a dice is tossed once then probability of getting an odd prime number is _____
- 10) Probability of any event is (numerically) always less than or equal to ______

4 Marks Questions

- 1. If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$ then find : $P(A \cap B)$, P(A/B) & P(B/A)
- 2. If P(E) = 0.45, P(F) = 0.55 & $P(E \cup F) = 0.75$ then find $P(E \cap F)$ & P(E/F).
- **3.** If A & B are independent events and :
 - (i) If P(A) = 0.4, $P(A \cup B) = 0.7$ then find P(B).
 - (ii) if P(A) = 0.5, $P(A \cup B) = 0.7$ then find P(B).
 - (iii) If P(A) = 0.35, $P(A \cup B) = 0.60$ then find P(B).
- 4. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting : (a) 2 red balls, (b) 2 blue balls.
- 5. A bag contains 3 white and 5 black balls. Two balls are drawn at random without replacement. Determine the probability of getting the black balls.
- 6. A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife's is 1/5. Find the probability that (a) both get selected (b) only one of them get selected.
- 7. The probability of A hitting a target is 4/5 and that of B is 2/3. They both fire at the target. Find the probability that : (a) at least one of them will hit the target, (b) only one of them will hit the target.
- 8. A problem is given to 3 students whose chances of solving it are 1/3, 1/5 and 1/6. What is the probability that (i) exactly one of them may solve it, (ii) the problem will be solved.
- 9. A problem is given to 3 students whose chances of solving it are 1/3, 1/5 and 1/6. What is the probability that (i) exactly two of them may solve it, (ii) at least two of them will solve it, (iii) problem will be solved.
- 10. Two bags contain 6 red and 4 black balls, 3 red and 3 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from first bag.
- 11. Two bags contain 7 red and 2 black balls, 3 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from first bag.
- 12. Two bags contain 5 red and 4 black balls, 7 red and 3 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from second bag.
- 13. Two bags contain 6 red and 5 black balls, 7 red and 9 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from second bag.

Instructions:

- 1. All the questions are compulsory.
- 2. The question paper consists of 16 questions divided into 4 sections A,B,C and D.
- 3. Section A comprises of 3 questions :
 - (i) Q.No.1 consists of 16 Multiple Choice Questions carrying 1 mark each.
 - (ii) Q.No.2 consists of 8 Fill in the Blank type questions carrying 1 mark each.
 - (iii) Q.No.3 consists of 8 True/False type questions carrying 1 mark each.
- 4. Section B comprises of 5 questions of 2 marks each.
- 5. Section C comprises of 5 questions of 4 marks each.
- 6. Section D comprises of 3 questions of 6 marks each.
- 7. Internal choice has been provided in three questions of 2 marks, three questions of 4 marks and three questions of 6 marks. You have to attempt only one of the alternatives in all such questions.
- 8. Use of calculator is not permitted.

Section – A

Q1 Choose the correct options in the following questions :

(i)	Function $f: R \rightarrow R, f($ (a)one-one only	(x) = 3x - 5 is : (b)onto only	(c)one-one and onto	(d)none of these	1	
(ii)	Relation given by $R = \frac{1}{2}$ (a)reflexive only	{(1, 1), (2, 2), (1, 2), (2, 2) (b)symmetric only	1)} is (c)transitive only	(d) equivalence relation	1	
(iii)	iii) $\cos^{-1}\left(\cos\frac{5\pi}{2}\right)$ is equal to :					
	$(a)\frac{\pi}{5}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{3}$	1	
(iv)	If $\begin{bmatrix} 1 & -x \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 8\\-3 \end{bmatrix}$ then value of x is:			1	
	(a)8	(b)-4	(c)3	(d)-8		
(v)	If order of matrix A is 2	2 imes 3 and order of matrix	A B is $3 imes 5$ then order of m	natrix BA is :	1	
	(a) 5×2	(b) 2×5	(c) 5×3	(d) 3×2		
(vi)	$lff(x) = \begin{cases} kx + 1, & x \le \\ 3x - 5, & x \ge \end{cases}$	$f(x) = \begin{cases} kx + 1, & x \le 5\\ 3x - 5, & x > 5 \end{cases}$ is continuous then value of k is :				
	(a) 9	(b) <u>5</u>	(c) $\frac{5}{3}$	(d) $\frac{3}{5}$	1	
(vii)	$\frac{d}{dx}$ {tan ⁻¹ (e^x)}is equal	to :			1	
	(a) $e^{x} \tan^{-1} e^{x}$	(b) $\frac{e^x}{1+e^{2x}}$	(c) 0	(d) $e^x \sec^{-1} x$	T	
(viii)	Critical point of the fun	ction $f(x) = x^2 - 10x$	+ 2 is :		1	
	(a) $x = 4$	(b) $x = 6$	(c) $x = 5$	(d) $x = 2$	-	
(ix)	$\int 3x^2 dx$ is equal to :			4 m 4	1	
	(a) $x + c$	(b) $x^2 + c$	(c) $x^{3} + c$	(d) $x^{+} + c$		
(x)	$\int_0^{\pi/2} \frac{\sin^{1/2} x}{\sin^{1/2} x + \cos^{1/2} x} dx$	s equal to :			1	
	(a)0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{4}$	-	
(xi) Degree of differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3y = 0$ is:				1		
	(a)3	(b) 2	(c)1	(d)0		
(xii)	If $\vec{a}.\vec{b} = \vec{a} \times \vec{b} $ then angle between vector \vec{a} and vector \vec{b} is :					
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$	T	
(xiii)	If $\vec{a}.\vec{b}=0$ then angle	between vectors \vec{a} and	\vec{b} is :		1	
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$	-	
(xiv)	Direction ratios of line	given by $\frac{x-1}{3} = \frac{2y+6}{12} = \frac{1}{2}$	$\frac{-z}{7}$ are :		1	
	(a) < 3,12,−7 >	(b) < 3, −6, 7 >	(c) < 3,6,7 >	(d)< 3,6,−7 >		
(xv)	Common area for each (a)infeasible region	constraint is called : (b)feasible region	(c)useless region	(d)main region	1	

(xvi)	If $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{8}$ and $P(A \cap B) =$	$=\frac{1}{r}$ then $P(A/B)$ is equal to :		
	(a) $\frac{2}{5}$ (b) $\frac{8}{15}$	(c) $\frac{2}{3}$	(d) $\frac{5}{8}$	1
Q2 F	ill in the blanks from the given options			
(i)	Value of $\sin^{-1}(1)$ is			1
(ii)	If $A = [a_{ii}]_{2\times 3}$ such that $a_{ii} = i + j$ the	en $a_{11} =$		1
(iii)	$ x 0 = 3 0 _{\text{then } r} =$			- 1
(iii) /· ·	$ _{7} $			-
(IV)	If $y = \cos x$ then at $x = 0$, $\frac{1}{dx} = $			1
(v)	$\int_0^s dx = \underline{\qquad}$	2		1
(vi)	Order of the differential equation $\frac{d^2y}{dx^2}$ –	$\left(\frac{dy}{dx}\right)^3 + y = 0$ is		1
(vii)	Direction ratios of x –axis are			1
(viii)	Probability of occurrence of impossible e	event =		1
<u></u>	tate true or false for the following state	monte		
(i)	If A is a square matrix then $(A + A')$ is a	ments : a skow-symmetric matrix		1
(1)	If $y = 10x$ then $\frac{dy}{dy} = 0$	skew-symmetric matrix.		1
(11)	$dy = 10x$ then $\frac{dx}{dx} = 0$.			1
(iii)	If $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$			1
(iv)	$\int dx = x^2 + c$			1
(v)	x dy - y dx = 0 is a variable separable t	type of differential equation.		- 1
(vi)	Scalar product of two perpendicular vect	ors is zero.		1
(vii)	The point $(3, -4, 2)$ lies on the y – axis.			1
(viii)	If $P(E) = 0.4$ then $P(not E) = 0.6$			1
		Section – B		
••	.			
Q 4	Given a matrix $A = \begin{bmatrix} 2 & 7 \end{bmatrix}$, show that	matrix $P = A + A^{T}$ is a symmetric mat	rix.	2
Q5	Find the interval in which function $f(x)$ =	$= x^2 + 2x - 7$ is increasing.		2
	$d^2 v$	UK		
	If $y = \log x$, then find $\frac{dx}{dx^2}$			2

Q6 Evaluate $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$.

Evaluate $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$

Q7 Using integration find the area bounded by the parabola $y^2 = 4x$ straight lines x = 1, x = 4 in the first quadrant.

Q8 Find the value of m if the vectors $\vec{a} = 2\hat{i} - \hat{j} - m\hat{k}$ and $\vec{b} = 5\hat{i} + 2\hat{j} - \hat{k}$ are perpendicular to each other. 2 OR

OR

Find the angle between the lines :
$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-7}{-5}$$
 and $\frac{x+5}{3} = \frac{y-2}{2} = \frac{z-6}{4}$ 2

2

2

2

Section – C

Q9	Show that function $:\mathbb{R} o\mathbb{R}$, $f(x)=rac{4-3x}{2}$ is one-one and onto.	4
Q10	If $y = x^{\sin x} + (\sin x)^x$ then find $\frac{dy}{dx}$.	4
	OD.	

OR Find the general solution of the differential equation $(\tan^{-1} y - x)dy = (1 + y^2)dx$.

Evaluate $\int_0^{\pi/2} \log \sin x \, dx$. Q11

Evaluate $\int [\log(\log x) + \frac{1}{(\log x)^2}] dx$

Q12 Solve the following linear programming problem graphically: Maximize and minimize Z = 4x + 3y subject to the constraints

$$x + y \le 8$$
, $4x + y \ge 8$, $x - y \ge 0$, $x \ge 0$, $y \ge 0$

OR

Probability of solving a specific problem independently by A and B are 1/2 and 1/3 respectively. If both Q13 try to solve the problem independently, find the probability that : (i)the problem is solved (ii) exactly one of them solves the problem

OR

In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If coin falls heads, he answers true and if it falls tails, he answers 4 false. Find the probability that he answers at least 12 questions correctly.

Section – D

Q14 (a)	Express the matrix $A = \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$	2 5 9 5 7 1	as a sum of a symmetric matrix and a skew-symmetric matrix.	4
(b)	If $A = \begin{bmatrix} 5 & -2 \\ 4 & 8 \end{bmatrix}$ and $B = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 3 & 2 \end{bmatrix}$ t	hen show that $(AB)' = B'A'$	2
			OR	

Solve the following system of linear equations by matrix method : 6 2x - 4y + 5z = 33x + y - 4z = 0x + y - z = 16

OR

Show that height of the cylinder of maximum volume that can be inscribed in a sphere of 30 cm is $\frac{60}{\sqrt{3}}$ cm. Q15

Solve $\int \frac{1}{x^4+1} dx$

Find the projection of the vector $\vec{a} = 3\hat{i} - 2\hat{j} + 7\hat{j}$ on the vector $\vec{b} = 6\hat{i} + \hat{j} - 2\hat{k}$ Q16(a)

Find any daigonal of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = 5\hat{\iota} + 2\hat{j} + \hat{k}$ (b) and $\vec{b} = \hat{\iota} + 9\hat{\jmath} + 2\hat{k}$. Also find the area of the parallelogram.

A line makes angles α , β , γ and δ with the diagonals of a cube, prove that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}$$

OR

4

4

4

4

6 2

4

6

6