थठिभेजर्मीजिभाद्दां

1. मैवम्नत-पे:

$$
\begin{aligned}
& \text { भयिभआयरातां-ठग्तीदब्भाग } \\
& \text { सभाउ - भठहीं } \\
& \text { दिम्ना - गाटिड } \\
& \text { भपिभा层टारान -यठिभेजर्मधिभान्टां } \\
& \text { यीगीभइंसीविट्डी - } 10 \\
& \text { यीगीभइसामभां - } 40 \text { fiैंट }
\end{aligned}
$$

Section B

Objectives :

B1: Usefulness in daily life.

1. Better understanding of Numbers.
2. Help in complicated calculations.
3. Improve in critical Thinking.
4. Improve Mental ability.

B2: Simplifying the complex:
1.It helps in understanding Basic operations of mathematics i.e. $\boldsymbol{+ , - , \mathbf { X } , \div}$
2.To understand properties associative, commutative, distributive, closure property.

B3: Life skills.

1. Helps in concentration.
2. Increase in knowledge.
3. Improve creativity.

B4: Vocabulary :

1. Rational Number: :यठिभेजर्मीधिभाहा
((ेग्मरहतरंघन)
2. Integers - : मियुगरर्मीचभाटा
(टितटीक्नतन्न)
3.Whole Number - : च्ठठरम्मिधभादा
(गलतरषषण)
3. Reciprocal - : Вिलटळ्न
(नैमीयवेवल)
4. Additive inverse - : సॅइाउनवछुलट
(भるेटिटटितदगम)
5. Multiplicative inverse - : गुट्टनभवह्टिट
(भलटीयलीवेटहट्टितदगम)

Section C

Building Bridges :

1.Toconnect with previous knowledge.
2. Basic concept of Rational numbers, fractions.
3. Positive and Negative Rational Numbers.
4. Represent Rational Numbers on Number line.
5. Standard form of Rational Numbers.

Section D

Period wise breakup for each chapter.

1.	Previous knowledge and Introduction	
2.	Rational numbers	
3.	Commutative and Associative properties on four operations	
4.	Rational Numbers (addition, Subtraction, Multiplication, Division)	
5.	Negative of Rational Numbers.	
6.	Representation of Rational Numbers on the number line.	
7.	Rational Numbers between two Rational Numbers.	

Period 1:

Entry behaviour of Teacher	10 min	Teacher will ask the question to check the previous knowledge of students : 1. What are natural numbers ?	Students may not able to respond the question onnumbers.

		2. What are whole numbers? 3. What are Integers' ? 4. What are fractions?	
Introduction of topic	10 min	Teacher will explain about the fractions, numerator and denominator. Example: Suppose we have 10chocolates and we have to distribute it In 5 children. How will you divide it.? But if we have 5 chocolate and 10 children then what should we do.?	Students will answer that we can give 2 chocolate to each child. Students may answer that we can give half chocolate to each child.
		Teacher will write on blackboard 10 children 5 chocolates Share of each child $=\frac{5}{10}$ $=\frac{1}{2}$ So here $\frac{1}{2}$ is a fraction with 1 as num and 2 as deno.	
Def of fraction	10 min	Fraction is a number which represent part of a whole number that whole number can be a single object or group of objects. For example : $=\frac{b}{12}$ is a fraction and read as five - twelveth we divide a given region in 12 equal parts and take the 5 parts. 5 as numerator and 12 as denominator.	Teacher will use Flash Card to explain this Flash Card No.1,2,3
Def. of proper and Improper fraction.	10 min	Proper fraction: When deno. >num that fraction is called proper fraction	Use of flash card no. 4,5

	e.g. $=\frac{5}{7}$ Improper fraction: When num $>$ deno. That fraction is called improper fraction e.g. $=$	友 \vdots Proper fraction is always less that 1 and improper fraction is always greater than 1.

Period 2:

Def. of Rational numbers.	10 min	The word Rational number is created from the word "Ration" e.g. 3: $2=\frac{3}{2}$ $=\frac{3}{2}$ is a rational number so a rational number is a number which can be represented in the form of ${ }^{\mathrm{E}}$ where p, q are integers and $\mathrm{q} \neq 0$, e.g. $\frac{4}{5}, \frac{-3}{8}, \frac{-9}{2}$	
Difference between Rational numbers and fractions		In fraction p,q are both +ve But in rational numbers p, q can be + ve as well as -ve $(q \neq 0)$	
Closure property on whole numbers $+,-, x, \div$	10 min	$0+5=5$, a whole number \therefore Whole numbers are closed under addition $5-7=-2$, which is not a whole number \therefore Whole number are not closed under subtraction. $\begin{aligned} & 0 \times 4=0 \\ & 3 \times 7=21 \end{aligned}$ \therefore Whole numbers are closed under multiplication $5 \div 8=\frac{8}{8}$ which is not a whole number.	$a+b$ is a whole number for any two a, b whole number $a \times b$ is a whole number for any two a , b whole numbers

		\therefore Whole number are not closed under division.	
Closure property on integers $+,-, x, \div$	10 min	$\begin{aligned} & -7+2=-5 \text { an integer } \\ & -7+(-5)=-12 \text { an integer } \\ & 2+(-9)=-7 \text { an integer } \end{aligned}$ \therefore integers are closed under addition. 7-5 $=2$ an integer $-6-8=-14$ an integer $-2-8=-10$ an integer \therefore integers are closed under Subtraction. $7 \times 4=28$ an integer. $-8 \times 3=-24$ an integer. $-9 x-5=+45$ an integer. \therefore integers are closed under Multiplication. $5 \div 8=\frac{8}{8}$ which is not an integer. \therefore integers are closed under division.	$a+b$ is an integer for any two integers a and b Any two integers a and b , $a-b$ is again an integers. Any two integers a and b, $a \times b$ is also an integer.
Closure property on Rational numbers	10 min	$\frac{3}{8}+\frac{(-5)}{7}$ $=\frac{21+(-4)}{56}=\frac{-1 y}{56}$ is a rational number $=\frac{-3}{8}+\frac{(-4)}{5}$ $=\frac{-: 5-(-32)}{40}$ $=\frac{-15-32 y}{40}=\frac{-47}{40}$ $=\frac{-4 \%}{40}$ is a rational number.	Any two rational number a and $b, a+b$ is a rational number Any two rational

		\therefore Rational numbers are closed under addition. $\begin{aligned} & \frac{-5}{7}-\frac{2}{3} \\ & =\frac{-5 x-2 x 7}{21}=\frac{-25}{21} \\ & \frac{5}{8}-\frac{4}{5}=\frac{25-32}{40}=\frac{7}{40} \end{aligned}$ $\frac{-29}{21}, \frac{7}{40}$ are rational numbers. \therefore Rational numbers are closed under subtraction. $\frac{-2}{3} \times \frac{4}{5}=\frac{-4}{15}$ is a rational $\frac{3}{7} \times \frac{2}{5}=\frac{6}{35}$ is a rational \therefore Rational numbers are closed under multiplication. $\begin{aligned} & \frac{-5}{3} \div \frac{2}{5}=\frac{-5}{3} \times \frac{5}{2}=\frac{-25}{6} \\ & \frac{2}{7} \div \frac{3}{5}=\frac{2}{7} \times \frac{5}{3}=\frac{10}{21} \\ & \frac{4}{5}+\frac{4}{3}=\frac{4}{5} \times \frac{3}{9}=0 \end{aligned}$ 0 is not a rational number.	number a and $b a-b$ is also a rational number.

$3^{\text {rd }}$ Period

Commutative property of whole numbers and integers	10 min	$2+3=3+2$	Addition is commutative or whole numbers and integer. $5+0=0+5$		
For any two whole numbers a, b $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ $2-3=-1$	Subtraction is not commutative for whole numbers. Int $3-2=1$ $\mathrm{a} b=\mathrm{b}=\mathrm{a}$				
$2 \times 3=3 \times 2$				\quad	Multiplication is
:---					
commutative for					
integer.					

		$\begin{aligned} & (-4) \times 5=5 \times(-4) \\ & a \times b=b \times \text { for any two integer. } \\ & 10 \div 5=2 \\ & 5 \div 10 \neq 2 \\ & a \div b \neq b \div a \end{aligned}$	Division is not commutative for whole numbers and integers.
Commutative property of Rational numbers	10 min	$\begin{aligned} & \frac{-2}{3}+\frac{5}{7}=\frac{-14+15}{21}=\frac{1}{21} \\ & \frac{5}{7}+\frac{(-2)}{3}=\frac{15-14}{21}=\frac{1}{21} \end{aligned}$ $a+b=b+a$ for any two rational numbers $\begin{aligned} & \frac{2}{3}-\frac{b}{4}=\frac{2}{4}-\frac{2}{3} \\ & \frac{2}{3}-\frac{b}{4}=\frac{\frac{y-1 b}{}}{12}=\frac{-7}{12} \\ & \frac{5}{4}-\frac{2}{3}=\frac{15-8}{12}=\frac{-7}{12} \\ & \frac{-7}{3}-\frac{6}{5}=\frac{-42}{15} \\ & \frac{6}{5} \times \frac{(-7)}{3}=\frac{-42}{15} \end{aligned}$ $a \times b=b \times a$ for any two rational number. $\begin{aligned} & \frac{-b}{4} \div \frac{3}{7}=\frac{-b}{4} \times \frac{y}{3}=\frac{-3 b}{12} \\ & \frac{3}{7} \div \frac{-b}{4}=\frac{3}{7} \times \frac{4}{-5}=-\frac{12}{35} \end{aligned}$	Addition is commutative for rational numbers. Subtraction is commutative for rational numbers. Multiplication is commutative for rational numbers. Division is commutative for rational numbers.
Associative property For whole numbers and integers	10 min	$(a+b)+c=a+(b+c)$ For any three integer $(2-5)-3 \neq 2-(5-3)$ $a \times(b \times c)=(a \times b) \times c$	Addition is associative Subtraction is not associative Multiplication is

		$[(-10) \div 2] \div(-5) \neq(-10) \div[2 \div(-5)]$	associative Division is not associative

Period 4:

Assosiative property for rational numbers	10 mins	$a+(b+c)=(a+b)+c$	Addition is associative
	5 mins	$a+(b+c)$ is not equal to (a+b)+c	Subtraction is not associative
	5 mins	$a \times(b \times c)=(a \times b) \times c$	Multiplication is associative
	$\begin{aligned} & 10 \\ & \text { mins } \end{aligned}$	$a \div(b \div c)=(a \div b) \div c$	Division is not associative
	2 mins	complete the table	
	3 mins	Numbers Associative for addition subtraction multiplication division	
		No	
		Integers	
		Yes	
		Whole numbers Yes	
		Natural numbers	
		No	
Role of zero			where a is a whole number
		$a+0=0+a=a$	where b is a integer
		$b+0=0+b=b$	

Role of 1	5 mins	$c+0=0+c=c$	where c is a rational number		
a $\times 1=1 \times \mathrm{a}=\mathrm{a}$ for any rational					
number a				\quad	1is the multiplicative identity for rational numbers
:---					

Period V

Negative of a number	5 mins	$2+(-2)=(-2)+2=0$ we say 2 is the negaitiveor additive inverse of -2	we have $a+(-a)=(-a)+a=$ 0 so, a is the negative of $-a$ and -a is the negative of a
Reciprocal	10 mins	if $(\mathrm{a} / \mathrm{b}) \times(\mathrm{c} / \mathrm{d})=1$	(c/d) is called reciprocal or multiplicative inverse of another raional number a / b if $(a / b) \times(c / d)=1$
Distributivity of multiplication over addition for rational numbers	10 mins	$a(b+c)=a b+a c$ $a(b-c)=a b-a c$	property holds for all rational numbers a, b and c
examples	15 mins		will help the students to learn the concepts in a better way

Period VI

भाविभाग 1.1 मटात्त 1-5	5 fiेट	यिळकेकेभटीड्रगठप्टी	
	5 fiें	महाल्तर्त: 1	
		महालत欠: 2	
	5 fiंट		
		महालत欠: 3	
	5 fिंट		

	10 fiेंट 10 fिंट	महात्तर्त: 4 महालतरण: 5	

Period VII

Period VIII

Representation of rational numbers on the number line	5 mins	Natural numbers	The line extends indefinitely only to the right side of 1
	5 mins	Whole numbers	10 mins
	Rational numbers Integers only to the right side of 0		
	The line extends to the both sides of zero indefinitely.		
mins			

Period IX

Rational numbers between two rational numbers	15 mins	Number of natural numbers between two natural numbers	There are definite number of natural numbers between two natural numbers

	10 mins	Number of rational numbers between two rational numbers mins mumbers between any two given rational numbers	Examples to find number of rational numbers between two nutional numbers
raill help the students to			
learn the concept in a better			
way			

Period X

मेवम्नतF-
मनॅठठी (टिस्रा- दमड़्)
 भयिभाथवसीटिमेछु

मवे हॅटमडिभागवठतलपीभटिभルवरैट,

।

छियवग्गाध1-
मर्ष्यपिउyoutube पागट्रात्ताhttps://www.youtube.com/watch?v=joZ3TOTfPkg,
https://www.youtube.com/watch?v=1DHqRtPuG-4

Bिथवागाथ2- मर्षपिउथ्रमउरांसागहात्ता; R.D. SHARMA CLASS VIII, R.S AGGARWAL CLASS VIII

मैवमतG -

दिमे / ग्रे / मिटेहातां		
A. भपिभायवसीसा्ट्यहाट		गंगारागचर, इमटवभनेتৈ̄उत्टीमट
		--
		--
		--
		--
		--
		--
	--	--
	--	--
		--
H.मभुर्वरतिभाग्टां		

N. Єैד		
O.मघटाट्टी	CROSSWORD	

मैवम्न $\mathrm{H}: \rightarrow$

छुंथठ्गा $\mathrm{H} 1: \rightarrow 1$.री 0 यठिमेजर्मधिभाग्ठे ?

2. री $3 / 2$ यठिमेजर्मधिभागे ?
3. रीv5 यटिमेजर्मधिभाग्ने ?
4.

सेवठ
5
Јटीभांत्ट्र
10

 ?
6. ऊॅपरवूँ"ल + या्टीभा = \qquad विल̄
7. सेवठ 5 विलेट्रॉपटिएँच 1 विलैधैभगतिवलटग्ठैउां 5

9. Write the rational that does not have a reciprocal ?
10. Write the rational number that is equal to its negative ?
11. Write the rational number that is equal to its reciprocal ?
12. Reciprocal of -5 is \qquad
13. Reciprocal of $1 / x, x$ not equal to 0 is \qquad .
14. Product of two rational number is always a \qquad .
15. The reciprocal of positive rational number is \qquad .
16. Which is the additive identity for rational number ?
17. Which is the multiplicative identity for rational number?
18. Can rational numbers be represented on the number line?
19. How many rational numbers are between $3 / 10$ and $7 / 10$

20 What is the additive inverse of $3 / 5$?
21. if a and b are two rational numbers then what about $a-b$?

23.Tell the property allow you to compute $1 / 3$ * $(6 * 4 / 3)$ as $(1 / 3 * 6) * 4 / 3$
24.If a and b are Rational then what about $a * b$.
$25 . a \div 0$ is defined or not?

7. वीPlayway techniques Math दिम्रेल्टीतिभम्टाठा户िट्टेभेंगत ?
8. टिॅवाटि डिभयिभआय

वितिभान्टारं	Flash card 1-8
दिमेत्र्ट्म	
विठिभाग्टीविमभ (ठितीविठिभा / मभुणट्चरिविभभा wठ राबसे	
विठिभाएटाट्टहतरणरेचैउठ	
वितिभाग्टेमिंटेटीटिभाषャभा	

Attached documents
Flash cards

भापिला民्टि-1 यठिभेज मिषिभान्टां

दिम्ना : किंतां

नैंटी सा मेड वीउा डाना $=\frac{1}{4}$

लाल यैँत, माने यैंतां टा $\frac{4}{10}$ काता चै।
थीले चुचे $=4$
वग्ले चुचे $=1$
fिँटे छुचे $=3$

वाले छुचे माने चुचिभां टा $1 / 8$ काता चै।
यीले चुचे माने चुचिभां टा $4 / 8$ डाना" चै।
चिँटे चुच्चे मग्ने चुचिभां टा $3 / 8$ कागा चे।

1 चाब्बलेट टे 4 घवाप्वत विनिभां दिँचं 1 गॉमा हॅधग वठत के घावी 3 गिमे उठि गाटे। घचे गुरिमे, थुठी चवलेट रा $\frac{3}{4}$ उाना गै।

Scanned by CamScanner

भक्रिभग्म लटी थूम्तर

3. 20 मैरिंड, 1 भिंट टा किंता बाना वै ? डित त्रे हिँच टॅम।

भयिभाएटि-1
 ขविभेज मंधिभाग्दां

दिप्रा : कितां

वूल गुघ्पाने $=13$

1 थीला n डे 5 हीले गुघापे वूल गुपगविभां टा कागा $=\frac{6}{13}$

Scanned by CamScanner

भपिभगटि-1
 यठिभेज मिषिभग्दां

निदें:
 5 डाग $\frac{5}{7}$ डिंत टउमण्हैंट वै।

[^0]
 टिम लटी $\frac{4}{12}$ फडे $\frac{1}{3}$ मभात यठिभेज मंधिभाहां गठ।

भकिभग्म लट्टी यूम्तर
वी टिठ मभात यटिभेज मंषिभान्टां गत ?

$\frac{3}{12}$
scannea oy Camscannel

พयिभगट्टि - 2
 यगिभेज मंखिभान्टां के विभान्हां

दिस्ना : हैं थठिमेज मिंिभाग्दां टे दिचवर्ठ थमिमेज मीविभान्दां थडा वडरा

4 मांझा गाट्त 15 चै। टिम
$\frac{4}{5}$ मींिभा रा गठ 5 गै। लटी 3 मडे 5 टा ल.म्.द. 15 गेदेगा।

यता 2.

$$
\frac{4}{5} \times \frac{3}{3}=\frac{12}{15}
$$

यठा 3. मिधिभा नेषा के तितुयत

टिम लटी $\frac{1}{3}$ भडे $\frac{4}{5}$ टे हिचरण्त थविमेज मीधिभादां :-

$$
\frac{6}{15}, \frac{7}{15}, \frac{8}{15}, \frac{9}{15}, \frac{10}{15}, \frac{11}{15}
$$

[^0]: Scanned by CamScanner

